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Priorities for the Java Platforms

Grow Developer Base

Grow Adoption

Increase Competitiveness

Adapt to change



44

Evolving the Language
From “Evolving the Java Language” - JavaOne 2005

Java language principles

– Reading is more important than writing
– Code should be a joy to read
– The language should not hide what is happening
– Code should do what it seems to do
– Every “good” feature adds more “bad” weight
– Sometimes it is best to leave things out
– Simplicity matters



How Java Evolves and Adapts
Of the community, by the community, for the community
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JDK 8 – Proposed Content
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Language
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Big Disclaimer

The syntax used in the 
following slides may 

change



Lambda Expressions I
Closures and Functional Programming

• Lambda expressions provide anonymous function types to Java

• They replace the use of single abstract method types (SAM)

• They are just instances of Runnable

Argument List Arrow Token Body

(int x, int y) -> x + y

Syntax

(a) A single expression: body is evaluated and result value returned.

(b) Statement block: body is evaluated as a method body and “return” statement 
returns control to the caller.

Body can be:



Lambda Expressions II
Closures and Functional Programming

Runnable r = () ­>
   { System.out.println( "I'm a Runnable!" ); };

r.run();

jbutton.addActionListener(
     e ­> { System.out.println( "Clicked" ); } );

•  n ­> n % 2 != 0;
•  (char c) ­> c == 'y';

•  (x, y) ­> x + y;

•  (int a, int b) ­> a * a + b * b;

•  () ­> { return 3.14 };

•  (String s) ­> 

{ System.out.println(s); };

• Type of parameters can be explicitly declared or taken from context.

• Argument parenthesis are optional when there is only one and its type 
can be inferred.

• Argument List can be empty, if it is so, parenthesis must exist.

• If body has more that one statement, then curly braces are needed.



Lambda Expressions III
Closures and Functional Programming



Extension Methods
Bringing Multiple Inheritance to Java

• Provide a mechanism to add new methods to existing interfaces

• Without breaking backwards compatability

• Gives Java multiple inheritance

public interface Set<T> extends Collection<T> 
{
    public int size();

    // ... The rest of the existing Set methods

    public T reduce( Reducer<T> r )  default Collections.<T>setReducer;
}



Annotations on Java Types

public void process(@notnull List data) {…}

• Annotations can currently only be used on type declarations
• Classes, methods, variable definitions

• Extension for places where types are used
• e.g. Parameters

• Permits error detection by pluggable type checkers
• e.g. null pointer errors, race conditions, etc



Access to Parameter Names at Runtime

• Mechanism to retrieve parameter names of methods and 
constructors

• At runtime via core reflection

• Improved code readability
• Eliminate redundant annotations

• Improve IDE capabilities
• Auto-generate template code



Small Things

• Repeating annotations 
           Multiple annotations with the same type applied to a single program element

• No more apt tool and associated API
           Complete the transition to the JSR 269 implementation

• DocTree API
           Provide access to the syntactic elements of a javadoc comment

• DocLint tool
           Use DocTree API to identify basic errors in javadoc comments

• Javadoc support in javax.tools
           Invoke javadoc tools from API as well as command line/exec
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Concurrency Updates

• Scalable update variables
● DoubleAccumulator, DoubleAdder, etc
● Multiple variables avoid update contention
● Good for frequent updates, infrequent reads

• ConcurrentHashMap updates
● Improved scanning support, key computation

• ForkJoinPool improvements
● Completion based design for IO bound applications
● Thread that is blocked hands work to thread that is running



Bulk Data Operations for Collections

• Adding .Net functionality
• LINQ style processing

• Serial and parallel implementations
• Generally expressed with Lambda statements

• Parallel implementation builds on Fork-Join framework



Date and Time APIs

• A new date, time, and calendar API for the Java SE platform

• Supports standard time concepts
• Partial, duration, period, intervals

• date, time, instant, and time-zone

• Initially provides a limited set of calendar systems and will be 
extensible to others

• Uses relevant standards, including ISO-8601, CLDR, and BCP47

• Based on an explicit time-scale with a connection to UTC



JDBC 4.2
Minor enhancements for usability and portability

• Add setter/update methods
• ResultSet, PreparedStatement and CallableStatement
• Support new data types such as those being defined in JSR 310

• REF_CURSOR support for CallableStatement

• Extended DatabaseMetaData.getIndexInfo
• new columns for CARDINALITY and PAGES which return a long value

• New DatabaseMetaData method
• getMaxLogicalLobSize
• Return the logical maximum size for a LOB



Small (or perhaps not) things

• Enhance core libraries with Lambdas (not small thing)

• Parallel array sorting (improve ≈ x4)

• Base 64 Encoding and Decoding (no need of undocumented API)

• Charset implementation improvements
● Reduced size of charsets
● Improved performance of encoding/decoding
● Reduced core-library memory usage

• Reduced object size, disable reflection compiler, internal table sizes

• Optimize java.text.DecimalFormat.format (improve x100 or x1000)

• Statically Linked JNI Libraries (needed for embedded applications)

• Handle frequent HashMap collisions with balanced trees
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Java SE 9 (and beyond…)



Vision: Interoperability

• Improved support for non-Java languages
• Invokedynamic (done)

• Java/JavaScript interop (in progress – JDK 8)

• Meta-object protocol (JDK 9)

• Long list of JVM optimizations (JDK 9+)

• Java/Native
• Calls between Java and Native without JNI boilerplate (JDK 9)



Vision: Cloud

• Multi-tenancy (JDK 8+)
• Improved sharing between JVMs in same OS

• Per-thread/threadgroup resource tracking/management

• Hypervisor aware JVM (JDK 9+)
• Co-operative memory page sharing

• Co-operative lifecycle, migration



Vision: Language Features

• Large data support (JDK 9)
• Large arrays (64 bit support)

• Unified type system (JDK 10+)
• No more primitives, make everything objects

• Other type reification (JDK 10+)
• True generics

• Function types

• Data structure optimizations (JDK 10+)
• Structs, multi-dimensional arrays, etc

• Close last(?) performance gap to low-level languages



Vision: Integration

• Modern device support (JDK 8+)
• Multitouch (JDK 8+)

• Location (JDK 8+)

• Sensors – compass, accelerometer, temperature, pressure, ... (JDK 8+)

• Heterogenous compute models (JDK 9+)
• Java language support for GPU, FPGA, offload engines, remote PL/SQL...



The Path Forward (JDK 10)

• Open development
• Prototyping and R&D in OpenJDK

• Cooperate with partners, academia, greater community

• Work on next JDK, future features in parallel

• 2-year cycle for Java SE releases



Java SE from JDK 7 to JDK 12

20112011 20152015 20192019 20142014

JDK 7JDK 7

20132013 20212021

JDK 12JDK 12

20172017

JDK 8JDK 8 JDK 9JDK 9 JDK 10JDK 10 JDK 11JDK 11

20122012

JVM convergence

Mac OS X

JVM convergence

Mac OS X
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