
<Insert Picture Here>

To Java SE 8, and Beyond
(Plan B)

Francisco Morero Peyrona
EMEA Java Community Leader

11-12-13

8
9

2020?...2012

Priorities for the Java Platforms

Grow Developer Base

Grow Adoption

Increase Competitiveness

Adapt to change

44

Evolving the Language
From “Evolving the Java Language” - JavaOne 2005

Java language principles

– Reading is more important than writing
– Code should be a joy to read
– The language should not hide what is happening
– Code should do what it seems to do
– Every “good” feature adds more “bad” weight
– Sometimes it is best to leave things out
– Simplicity matters

How Java Evolves and Adapts
Of the community, by the community, for the community

66

8

JDK 8 – Proposed Content

88

Language

99

Big Disclaimer

The syntax used in the
following slides may

change

Lambda Expressions I
Closures and Functional Programming

• Lambda expressions provide anonymous function types to Java

• They replace the use of single abstract method types (SAM)

• They are just instances of Runnable

Argument List Arrow Token Body

(int x, int y) -> x + y

Syntax

(a) A single expression: body is evaluated and result value returned.

(b) Statement block: body is evaluated as a method body and “return” statement
returns control to the caller.

Body can be:

Lambda Expressions II
Closures and Functional Programming

Runnable r = () ­>
 { System.out.println("I'm a Runnable!"); };

r.run();

jbutton.addActionListener(
 e ­> { System.out.println("Clicked"); });

• n ­> n % 2 != 0;
• (char c) ­> c == 'y';

• (x, y) ­> x + y;

• (int a, int b) ­> a * a + b * b;

• () ­> { return 3.14 };

• (String s) ­>

{ System.out.println(s); };

• Type of parameters can be explicitly declared or taken from context.

• Argument parenthesis are optional when there is only one and its type
can be inferred.

• Argument List can be empty, if it is so, parenthesis must exist.

• If body has more that one statement, then curly braces are needed.

Lambda Expressions III
Closures and Functional Programming

Extension Methods
Bringing Multiple Inheritance to Java

• Provide a mechanism to add new methods to existing interfaces

• Without breaking backwards compatability

• Gives Java multiple inheritance

public interface Set<T> extends Collection<T>
{
 public int size();

 // ... The rest of the existing Set methods

 public T reduce(Reducer<T> r) default Collections.<T>setReducer;
}

Annotations on Java Types

public void process(@notnull List data) {…}

• Annotations can currently only be used on type declarations
• Classes, methods, variable definitions

• Extension for places where types are used
• e.g. Parameters

• Permits error detection by pluggable type checkers
• e.g. null pointer errors, race conditions, etc

Access to Parameter Names at Runtime

• Mechanism to retrieve parameter names of methods and
constructors

• At runtime via core reflection

• Improved code readability
• Eliminate redundant annotations

• Improve IDE capabilities
• Auto-generate template code

Small Things

• Repeating annotations
 Multiple annotations with the same type applied to a single program element

• No more apt tool and associated API
 Complete the transition to the JSR 269 implementation

• DocTree API
 Provide access to the syntactic elements of a javadoc comment

• DocLint tool
 Use DocTree API to identify basic errors in javadoc comments

• Javadoc support in javax.tools
 Invoke javadoc tools from API as well as command line/exec

Library

Concurrency Updates

• Scalable update variables
● DoubleAccumulator, DoubleAdder, etc
● Multiple variables avoid update contention
● Good for frequent updates, infrequent reads

• ConcurrentHashMap updates
● Improved scanning support, key computation

• ForkJoinPool improvements
● Completion based design for IO bound applications
● Thread that is blocked hands work to thread that is running

Bulk Data Operations for Collections

• Adding .Net functionality
• LINQ style processing

• Serial and parallel implementations
• Generally expressed with Lambda statements

• Parallel implementation builds on Fork-Join framework

Date and Time APIs

• A new date, time, and calendar API for the Java SE platform

• Supports standard time concepts
• Partial, duration, period, intervals

• date, time, instant, and time-zone

• Initially provides a limited set of calendar systems and will be
extensible to others

• Uses relevant standards, including ISO-8601, CLDR, and BCP47

• Based on an explicit time-scale with a connection to UTC

JDBC 4.2
Minor enhancements for usability and portability

• Add setter/update methods
• ResultSet, PreparedStatement and CallableStatement
• Support new data types such as those being defined in JSR 310

• REF_CURSOR support for CallableStatement

• Extended DatabaseMetaData.getIndexInfo
• new columns for CARDINALITY and PAGES which return a long value

• New DatabaseMetaData method
• getMaxLogicalLobSize
• Return the logical maximum size for a LOB

Small (or perhaps not) things

• Enhance core libraries with Lambdas (not small thing)

• Parallel array sorting (improve ≈ x4)

• Base 64 Encoding and Decoding (no need of undocumented API)

• Charset implementation improvements
● Reduced size of charsets
● Improved performance of encoding/decoding
● Reduced core-library memory usage

• Reduced object size, disable reflection compiler, internal table sizes

• Optimize java.text.DecimalFormat.format (improve x100 or x1000)

• Statically Linked JNI Libraries (needed for embedded applications)

• Handle frequent HashMap collisions with balanced trees

2323

9...

Java SE 9 (and beyond…)

Vision: Interoperability

• Improved support for non-Java languages
• Invokedynamic (done)

• Java/JavaScript interop (in progress – JDK 8)

• Meta-object protocol (JDK 9)

• Long list of JVM optimizations (JDK 9+)

• Java/Native
• Calls between Java and Native without JNI boilerplate (JDK 9)

Vision: Cloud

• Multi-tenancy (JDK 8+)
• Improved sharing between JVMs in same OS

• Per-thread/threadgroup resource tracking/management

• Hypervisor aware JVM (JDK 9+)
• Co-operative memory page sharing

• Co-operative lifecycle, migration

Vision: Language Features

• Large data support (JDK 9)
• Large arrays (64 bit support)

• Unified type system (JDK 10+)
• No more primitives, make everything objects

• Other type reification (JDK 10+)
• True generics

• Function types

• Data structure optimizations (JDK 10+)
• Structs, multi-dimensional arrays, etc

• Close last(?) performance gap to low-level languages

Vision: Integration

• Modern device support (JDK 8+)
• Multitouch (JDK 8+)

• Location (JDK 8+)

• Sensors – compass, accelerometer, temperature, pressure, ... (JDK 8+)

• Heterogenous compute models (JDK 9+)
• Java language support for GPU, FPGA, offload engines, remote PL/SQL...

The Path Forward (JDK 10)

• Open development
• Prototyping and R&D in OpenJDK

• Cooperate with partners, academia, greater community

• Work on next JDK, future features in parallel

• 2-year cycle for Java SE releases

Java SE from JDK 7 to JDK 12

20112011 20152015 20192019 20142014

JDK 7JDK 7

20132013 20212021

JDK 12JDK 12

20172017

JDK 8JDK 8 JDK 9JDK 9 JDK 10JDK 10 JDK 11JDK 11

20122012

JVM convergence

Mac OS X

JVM convergence

Mac OS X

	To Java SE 8, and Beyond!
	Slide 2
	Priorities for the Java Platforms
	Slide 4
	How Java Evolves and Adapts Of the community, by the community, for the community
	Slide 6
	JDK 8 – Proposed Content
	Slide 8
	Big Disclaimer
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Java SE 9 (and beyond…)
	Vision: Interoperability
	Vision: Cloud
	Vision: Language Features
	Vision: Integration
	The Path Forward
	Java SE 2012 to Java 12
	Slide 31

